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Continuing the development of results previously obtained for systems with delay described by first-order differential equations 

with delay [I], a system without delay is constructed which enables the periodic motions of systems with delay to be found. 

0 2001 Elsevier Science Ltd. All rights reserved. 

Problems concerned with determining the periodic motions generated from equilibrium states of systems with delay 
have been considered before [2-4]. For systems with delay there are no reasonably simple and convenient ways of 
finding periodic motions as there are for systems without delay. It is therefore essential to establish new ways of 
finding periodic motions of systems with delay, described even by a first-order system with delay. 

Let us consider a system with delay described by a first-order differential equation with delay 

i = a(i?)x + b(E)X(l- f)+ F(E, x, x(r - T)) (I) 

wherex is a scalar, E is a parameter, and the dot stands for differentiation with respect to t. 
Let us assume that F(0, 0, 0) = 0 and that the analytical function F(E, x1, x2) may be expanded in the 

neighbourhood of the point x1 = x2 = 0 in a series beginning with terms of at least the second order in (x,, x2), of 
the following form 

F(E x, x2) = F(2) + P3) + 3 , **. (4 
F(2k XI . Xz, = a;&)X&. fi3’(E, XI, X2) = O;&)X&+, 

where uik and a;kp are coefficients that depend on the parameter E. Throughout this paper, repeated subscripts i, 
k (i, k,p) indicate summation over all 1 G i s k s 2 (1 G i G k s p s 2). 

Suppose the characteristic equation 

A@) = p-a(~) - b(E) exp (97) = 0 

when E = 0 has rootsP1,2 = 2 iw and pi which satisfy the condition Repj (0) c -0 < 0. 
Assume that 

In what follows we will construct, for systems with delay described by Eq. (l), a second-order, system without 
delay, using which one can approximately find limit cycles of Eq. (l), depending on the values of E. The limit cycles 
of Eq. (l), determined for small E, may then be extended to finite values of E by numerical continuation with respect 
to E. 

We write Eq. (1) in operator form [5] 

dX,(e)/df=AX,(e)+R(&,Xr(e)), X,(e)=X(l+e) 

Ax,(e) = 
i 

dr,(e)lde, -rce<o 

a(E)x,(o)+b(E)x,(-t). e=o 

(3) 

R(E’ x’(‘)) = i 

0, -rseco 

F(E, X,(o), X,(-T)). 8 = 0 

where X(0 is a solution of Eq. (1) for t > 0 with continuously differentiable initial function x0(e) = cp(e). 
Consider the functionals 
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and the functions 

Yj('.E)=fi(X,(e),E)=X,(0)-b(E)I~T exp(-pjr)x,(v)& 

bj(0,E)=exp(pj(E)0)IAj (Aj =l+b(o)rpj(a)) 

Proceeding as in the previous paper [5], using the change of variables 

.Vj(~)=fj(X,(e)vE)v z,(8) = x,(8)-b,@, E)Y/W 

(throughout, a repeated subscripts 1 indicates summation from 1 to 2) we replace Eqs (3) by the system of equations 

j; =PjY, +HII, dz,Wdr = AZ,@)+ H,2 (4) 

where 

S(O) = 0 for -r 5 8 c 0,6(O) = 1 and S,,,,, is the Kronecker delta. 
Suppose fi2)(&, xi, x2) = 0. In that case, the truncated system without delay is obtained [5] by putting z, (0) = 

zr(-r) = 0 in the first two equations of system (4), and has the form 

Yj =Pj(E)Yj +Fc3’(GalIYI +a12&.a2lyr +a22y2), j= I.2 (5) 

ajl = bj(0. E), Cig = bj(-T, e). 

Taking the last relation of (2) into consideration, we obtain from system (5) 

where 

(6) 

4&l = ~ikp(~)a,l~klapl 

(7) 

033(E) = Qp(E)ai2ak2ap2 

System (5) is a system of differential equations which, up to terms y; y‘$ of order r + q = 3, is identical with a 
system on a two-dimensional stable central manifold, which exists in the neighbourhood of the equilibrium state 
x = 0 of Eq. (1) for sufficiently small E [3,4], and which we will denote by o. 

If when E = 0 the quantitygt defined for Eq. (l), which is similar to the first Lyapunov number, does not vanish, 
then as E is increased from E < 0 to E > 0, a limit cycle F(E) lying on cr is generated from the equilibrium state 
x = 0, or contracts to that state. Since gl for E = 0 is also simultaneously the first Lyapunov number of system (6), 
it follows that, as E is increased from E c 0 to E > 0, a limit cycle Ia is generated from the equilibrium state 
yl = y2 = 0 or contracts to that state. For sufficiently small E, the limit cycles ro(~) and I(E) are close together. Let 
(yy, yy) be a point of r,,(E). Then for small E the function 

x0(f) = b,(e. a$, (e E t--T, 01) 

may be taken as an approximate initial function for the limit cycle I(&). As E increases from E = 0 or as E decreases 
from E = 0, the limit cycle F(s) of Eq. (1) may be determined approximately, e.g. by numerical continuation with 
respect to the parameter E. 

Now consider the case F(*) # 0. Following earlier arguments [5], we introduce the following change of variables 
in system (4) 

z,(e)= ~,(~)+~Y~.Y~.E) Y = C 4qvb)~;~~ 
r+q=2 

(8) 

(the values of C&,(C), E) will be found below). 
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In the new variables, system (4) becomes 

,‘i = PjYj + F(Evallyl +Y(O.Yl.Y2.&)+~~(0)9 a,2Yl +Y(-L Yl, Y2~E)+U,(-O) 

du,(8)ldr=Au,(8)+H2(~1.~2,~,(e).~) (9) 

H, =AY+H,-@Y~~Y,)~,. H, = B*,@, ay: + B, , (8, E)Y,Y, + B,,(e, E)y: + . . 

where the dots stand for terms y; y’i with r + q 3 3. The coefficients B,(9, E), where r + q = 2, have the form 

~~~(0. a) = Arg(a)(&e) - (br (e. a) + b2(e. ~1)) 

where&,(s) are the coefficients of the quadratic termsyi y’$ (r + q = 2) in the function F(E, altyl, o,zy,). 
Equating the coefficients of the quadratic terms y; y; in the function Hz to zero [5], we obtain equations for 

d,(e, E) (r + q = 2): 

L%,, - A)d,W = B,(0. a); &I = 2Pl (a. Al I = PI@) + PZW, lb2 = 2p2W (10) 

where J is the identity operator. 
Equation (10) with r + q = 2 yields 

2 exp(-p,r)-exp(-kL,r) 
L,q = c 

j=l (Pj -‘,-q)Aj ’ 
N&q) = )L,q -a(e) - Wexp C-&T) 

The truncated second-order system without delay is obtained in this case from system (9) when U,(O) = t&r) = 0 

)ii=Pj(E)yj+Q(E.YI.y2), _i=t,2 (12) 

where 

ye. =aj,y, +aj2y, + C dcj’y’yq 1 
r+q=2 

“I I 2’ d”‘=d 
‘Q 

(0 E) dc2’ =d rq 9 ’ rq (-T E) rq 9 9 r+q=2, j=l.2 

The function Q(~,y,,yz) in (12) has the form 

Q(&. YI. ~2) = c c A,q(&)y;y! 
2Gk r+q=k 

From (13), multiplying vi, vk and VP, we obtain 

&o(E) = ajk (E)ailakl. Al1(&)=a~(&)(ailak2+aklai2) 

432 (E) = aik (E)a@k2, A,(E)=D~(E)+C~~(E) (r+q=3) 

The functions &(E) are given by formulae (7), and 

Consider the system 

(14) 

(15) 

_+j =P~(E)Y~ +Q*(E*Y~,Y~)* i= t-2 

Q'= 1 c ArqW;$j. 
2skr3 r+q=k 

(16) 
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As in the case F2 = 0, system (16) with E = 0 has a first Lyapunov number gi, which is identical with a quantity 
similar to the first Lyapunov number for Eq. (1). Hence it follows that in the present case one obtains results, relating 
to the determination of limit cycles I(E) of Eq. (1) with the help of system (16), similar to those obtained above 
for the case F2 = 0. 

As an example, consider the equation 

The characteristic quasi-polynomial 

a=-Esin(x(f- I)) (17) 

p+.Wp=o (18) 

with E = 62 has two roots p1,2 = 2 in/2 and the other roots have Re pi < -cr < 0. When E = ~12, 
gt < 0 for Eq. (17). Hence it follows that when E is increased from E = x/2, a stable limit cycle is generated from 
the equilibrium state x = 0 of Eq. (17). It has been found by the technique described above for E = 1.9, 2.5 and 
3. In all these cases one obtains stable periodic solutions in the (x, t) plane, similar to sinusoids with period 4 and 
amplitudes 0.2, 1.7 and 2.3. These periodic solutions are stable limit cycles of Eq. (17). 
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